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Elementary Matrices

Inverses of elementary matrices

Smith Normal Form
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Elementary Matrices

Definition

An elementary matrix is a matrix obtained from an identity matrix by
performing a single elementary row operation.



Elementary Matrices

Definition

An elementary matrix is a matrix obtained from an identity matrix by
performing a single elementary row operation.

Remark ( Three Types of Elementary Row Operations )
(~ bases for genomic sequences)

» Type [: Interchange two rows.

» Type II: Multiply a row by a nonzero number.

» Type III: Add a (nonzero) multiple of one row to a different row.



Example

Switch the 2nd row Multiply —2 to the Add —3 multiple of
and the 4th row 3rd row 1st row to the 3rd row
1 0 0 O 1 0 0 0 1 0 0 O
0 0 0 1 0 1 0 0 0 1 0 O
S 0 0 1 0 5= 0 0 -2 0 6= -3 0 1 0 [’
0 1 0 O 0 0 0 1 0 0 0 1

are examples of elementary matrices of types I, II and III, respectively.



Example (continued)
Let

B~ W N

=W N =



Example (continued)
Let

W N =
=W N =

We are interested in the effect that (left) multiplication of A by E, F and G
has on the matrix A.



Example (continued)
Let

W N =
w N =

W~

4

We are interested in the effect that (left) multiplication of A by E, F and G
has on the matrix A. Computing EA, FA, and GA ...



Example (continued)

Switch the 2nd row

EA = and the 4th row

OO O =
— 0 9 9@
O = O O
O O = O
W N =
ISR N
N o R =
N W b =



Example (continued)

Switch the 2nd row
and the 4th row

Multiply —2 to the
3rd row



Example (continued)

1 0 0 O 1 1 1 1
0O 0 0 1 2 9 4 4 Switch the 2nd row
I = 0 0 1 0 3 3|13 3 and the 4th row
0O 1 0 O 4 4 2 2
10 00 11 11 '
FA — 0 1 0 0 2 92 N 2 2 Mul‘mgl;(ri —2 to the
0 0 -2 0 3 3 -6 —6 rd row
0 0 0 1 4 4 4 4
1000 11 11 _
GA — 01 0 0 2 2| |2 2 1Add —3 multiple of
o 30 1 0 3 3= 1o o st row to the 3rd row
0 0 0 1 4 4 4 4
[ |
Remark

The elementary matrices are the programmed receipts for your cooking!



Theorem (Multiplication by an Elementary Matrix)
Let A be an m X n matrix.
If B is obtained from A by performing one single elementary row
operation,
then B = EA

where E is the elementary matrix obtained from I,, by performing the
same elementary operation on I, as was performed on A.



Problem
Let

1 3 2 -5
Find elementary matrices E and F so that C = FEA.

A:{41} and Cz[l S



Problem
Let
4 1 1 3
A_[l 3} and C—[2 75}
Find elementary matrices E and F so that C = FEA.

Solution

Note. The statement of the problem implies that C can be obtained from A
by a sequence of two elementary row operations, represented by elementary
matrices E and F.



Problem
Let
4 1 1 3
A_[l 3} and C—[2 75}
Find elementary matrices E and F so that C = FEA.

Solution

Note. The statement of the problem implies that C can be obtained from A
by a sequence of two elementary row operations, represented by elementary
matrices E and F.
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Problem
Let
4 1 1 3
A_[l 3} and C—[2 75}
Find elementary matrices E and F so that C = FEA.

Solution

Note. The statement of the problem implies that C can be obtained from A
by a sequence of two elementary row operations, represented by elementary
matrices E and F.
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Problem
Let
4 1 1 3
A_[l 3} and C—[2 75}
Find elementary matrices E and F so that C = FEA.

Solution

Note. The statement of the problem implies that C can be obtained from A
by a sequence of two elementary row operations, represented by elementary
matrices E and F.

S RN



Problem
Let

1 3 2 =5
Find elementary matrices E and F so that C = FEA.

[ 3] el

Solution

Note. The statement of the problem implies that C can be obtained from A
by a sequence of two elementary row operations, represented by elementary
matrices E and F.

4 17571 311 37
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Problem
Let

1 3 2 =5
Find elementary matrices E and F so that C = FEA.

[ 3] el

Solution

Note. The statement of the problem implies that C can be obtained from A
by a sequence of two elementary row operations, represented by elementary
matrices E and F.

4 17571 311 37
S EEE L PR R P b

|

1

0 1
1 O]andF_{72

= ©

where E = {



Problem
Let

1 3 2 =5
Find elementary matrices E and F so that C = FEA.

[ 3] el

Solution

Note. The statement of the problem implies that C can be obtained from A
by a sequence of two elementary row operations, represented by elementary
matrices E and F.

[4 1151 3151 37
-1 a]Ela i]F e 3]
0 1 1 0
where E = 1 0 ] and F = { _9 1 }Thus we have the sequence

A — EA — F(EA)



Problem
Let

1 3 2 -5
Find elementary matrices E and F so that C = FEA.

[ 3] el

Solution

Note. The statement of the problem implies that C can be obtained from A
by a sequence of two elementary row operations, represented by elementary
matrices E and F.

and F = .Thus we have the sequence

C, s0 C =FEA, ie.,

EEINER

where E =

A—EA—-F

s
=

= O
O =
=
w =
| S



Inverses of elementary matrices
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Inverses of Elementary Matrices

Lemma

Every elementary matrix E is invertible, and E~! is also an elementary
matrix (of the same type). Moreover, E~! corresponds to the inverse of the
row operation that produces E.



Inverses of Elementary Matrices

Lemma

Every elementary matrix E is invertible, and E~! is also an elementary
matrix (of the same type). Moreover, E~! corresponds to the inverse of the
row operation that produces E.

The following table gives the inverse of each type of elementary row

operation:
Type Operation Inverse Operation
1 Interchange rows p and q Interchange rows p and q
11 Multiply row p by k # 0 Multiply row p by 1/k
111 Add k times row p to row q # p | Subtract k times row p from row q

Note that elementary matrices of type I are self-inverse.



Inverses of Elementary Matrices

Example

Without using the matrix inversion algorithm, find the inverse of the
elementary matrix

OC[OO»A
O O = O
o= OO
= O O o



Inverses of Elementary Matrices

Example

Without using the matrix inversion algorithm, find the inverse of the
elementary matrix

1 0 0 0
0 1 0 O
&= -3 0 1 0
0 0 0 1
Hint. What row operation can be applied to G to transform it to 147



Inverses of Elementary Matrices

Example

Without using the matrix inversion algorithm, find the inverse of the
elementary matrix

1 0 0 0

0 1 0 0
Ch -3 0 1 0
0 0 0 1

Hint. What row operation can be applied to G to transform it to [47 The
row operation G — I4 is to add three times row one to row three,



Inverses of Elementary Matrices

Example
Without using the matrix inversion algorithm, find the inverse of the
elementary matrix
1 0 0 0
0 1 0 O
&= -3 0 1 0
0 0 0 1

Hint. What row operation can be applied to G to transform it to [47 The
row operation G — I4 is to add three times row one to row three, and thus

G *t=

S W ok
o o= O
o = O o
— o oo



Inverses of Elementary Matrices

Example
Without using the matrix inversion algorithm, find the inverse of the
elementary matrix
1 0 0 0
0 1 0 O
&= -3 0 1 0
0 0 0 1

Hint. What row operation can be applied to G to transform it to [47 The
row operation G — I4 is to add three times row one to row three, and thus

G *t=

O W o
o o = o
o= O o
— O O O

Check by computing G~ *G.



Example (continued)

Similarly,



Example (continued)

Similarly,

and



Suppose A is an m X n matrix and that B can be obtained from A by a
sequence of k elementary row operations.



Suppose A is an m X n matrix and that B can be obtained from A by a
sequence of k elementary row operations. Then there exist elementary
matrices Ei, Eo, ... Ex such that

B =Ex(Ex_1(--- (B2(E1A))--+))



Suppose A is an m X n matrix and that B can be obtained from A by a
sequence of k elementary row operations. Then there exist elementary
matrices Ei, Eo, ... Ex such that

B = Ex(Bx—1(: - (E2(E1A)) )
Since matrix multiplication is associative, we have

B = (ExEx_1---EsE1)A



Suppose A is an m X n matrix and that B can be obtained from A by a
sequence of k elementary row operations. Then there exist elementary
matrices Ei, Eo, ... Ex such that

B = Ex(Bx—1(: - (E2(E1A)) )
Since matrix multiplication is associative, we have
B = (ExEx—1---E2E1)A

or, more concisely, B = UA where U = ExEx_; - - - ExEq.



Suppose A is an m X n matrix and that B can be obtained from A by a
sequence of k elementary row operations. Then there exist elementary
matrices Ei, Eo, ... Ex such that

B = Ex(Bx—1(: - (E2(E1A)) )
Since matrix multiplication is associative, we have
B = (ExEx—1---E2E1)A

or, more concisely, B = UA where U = ExEx_; - - - ExEq.

To find U so that B = UA, we could find E;, Eo, ..., Ex and multiply these
together (in the correct order), but there is an easier method for finding U.



Definition

Let A be an m X n matrix. We write
A—B

if B can be obtained from A by a sequence of elementary row operations.



Definition

Let A be an m X n matrix. We write
A—B

if B can be obtained from A by a sequence of elementary row operations. In
this case, we call A and B are row-equivalent.



Definition

Let A be an m X n matrix. We write
A—B

if B can be obtained from A by a sequence of elementary row operations. In
this case, we call A and B are row-equivalent.

Theorem

Suppose A is an m X n matrix and that A — B. Then



Definition

Let A be an m X n matrix. We write
A—B

if B can be obtained from A by a sequence of elementary row operations. In
this case, we call A and B are row-equivalent.

Theorem
Suppose A is an m X n matrix and that A — B. Then

1. there exists an invertible m X m matrix U such that B = UA;



Definition

Let A be an m X n matrix. We write
A—B

if B can be obtained from A by a sequence of elementary row operations. In
this case, we call A and B are row-equivalent.

Theorem
Suppose A is an m X n matrix and that A — B. Then
1. there exists an invertible m X m matrix U such that B = UA;

2. U can be computed by performing elementary row operations on
[ A ‘ I } to transform it into [ B ‘ U };



Definition

Let A be an m X n matrix. We write
A—B

if B can be obtained from A by a sequence of elementary row operations. In
this case, we call A and B are row-equivalent.

Theorem
Suppose A is an m X n matrix and that A — B. Then
1. there exists an invertible m X m matrix U such that B = UA;
2. U can be computed by performing elementary row operations on
[ A ‘ I } to transform it into [ B ‘ U };
3. U=ExEx_1---E2E1, where E1, Es, ..., Ex are elementary matrices

corresponding, in order, to the elementary row operations used to
obtain B from A.



Problem

Let A = ;’ _(1) (1) , and let R be the reduced row-echelon form of A.

Find a matrix U so that R = UA.



Problem

Let A = 2 _(1) (1) } , and let R be the reduced row-echelon form of A.

Find a matrix U so that R = UA.

Solution

S 0O 1|1 O . 1 1 1|1 -1 N 1 1 1 1
2 -1 0|0 1 2 -1 0|0 1 0 -3 —-2| -2

o1 oslos )=t oa)2n 1]



Problem

3 ('

Let A = [ 9 —1 0|’ and let R be the reduced row-echelon form of A.

Find a matrix U so that R = UA.

Solution
S 0O 1|1 O . 1 1 11 -1 N 1 1 1 1
2 -1 00 1 2 -1 0]0 1 0 -3 —-2| -2

_{(1) } 2/:1%‘2/:1), :”%{(1) (1) ;g;g 7(1)}

Starting with [ A ‘ I ], we’ve obtained [ R ‘ U ]



Problem

Let A = 2 _(1) (1) , and let R be the reduced row-echelon form of A.

Find a matrix U so that R = UA.

Solution

S 0O 1|1 O . 1 1 1|1 -1 N 1 1 1 1
2 -1 0|0 1 2 -1 0|0 1 0 -3 —-2| -2

_{(1) } 2/:1%‘2/:1), :”%{(1) (1) ;g;g 7(1)}

Starting with [ A ‘ I ], we’ve obtained [ R ‘ U ]

Therefore R = UA, where

o[ 2]



Example ( A Matrix as a product of elementary matrices )

Let
1 2 —4
A=| -3 -6 13 |.
0 -1 2



Example ( A Matrix as a product of elementary matrices )
Let

1 2 -4
A=| -3 -6 13
0 -1 2

Suppose we do row operations to put A in reduced row-echelon form, and
write down the corresponding elementary matrices.



Example ( A Matrix as a product of elementary matrices )
Let

1 2 -4
A=| -3 -6 13
0 -1 2

Suppose we do row operations to put A in reduced row-echelon form, and
write down the corresponding elementary matrices.

1 2 —4

-3 -6 13
0 -1 2



Example ( A Matrix as a product of elementary matrices )
Let

1 2 -4
A=| -3 -6 13
0 -1 2

Suppose we do row operations to put A in reduced row-echelon form, and
write down the corresponding elementary matrices.

1 2 —4 2 —4

1
-3 -6 13| & |0 0 1
0 -1 2 0 -1 2



Example ( A Matrix as a product of elementary matrices )
Let

1 2 -4
A=| -3 -6 13
0 -1 2

Suppose we do row operations to put A in reduced row-echelon form, and
write down the corresponding elementary matrices.

1 2 —4 1 2 —4 1
-3 -6 13| ®, |0 0 1|%, |0 -1 2
0 -1 2 0 -1 2 0



Example ( A Matrix as a product of elementary matrices )
Let

1 2 -4
A=| -3 -6 13
0 -1 2

Suppose we do row operations to put A in reduced row-echelon form, and
write down the corresponding elementary matrices.

1 2 -4 1 2 -4 1 —4
-3 -6 13| 8|0 0 1| w |0 -1 2| &
0 -1 2 0 -1 2 0 1

1 2 —4

0 1 -2

00 1



Example ( A Matrix as a product of elementary matrices )
Let

1 2 -4
A=| -3 -6 13
0 -1 2

Suppose we do row operations to put A in reduced row-echelon form, and
write down the corresponding elementary matrices.

1 2 —4 1 2 —4 1 2 —4
-3 -6 13| 8|0 0 1| w |0 -1 2| &
0 -1 2 0 -1 2 0 0 1
1 2 —4 10 0
01 -2 | ®m |0 1 -2
0 0 1 00 1



Example ( A Matrix as a product of elementary matrices )
Let

1 2 -4
A=| -3 -6 13
0 -1 2

Suppose we do row operations to put A in reduced row-echelon form, and
write down the corresponding elementary matrices.

1 2 —4 1 2 —4 1 2 -4
-3 -6 13| 8|0 0 1| w |0 -1 2| &
0 -1 2 [ ) 0 0 1
1 2 —4 10 0 10 0
01 2| gm |01 2% |0 10
0 0 1 0 0 1 0 0 1



Example ( A Matrix as a product of elementary matrices )
Let

1 2 -4
A=| -3 -6 13
0 -1 2

Suppose we do row operations to put A in reduced row-echelon form, and
write down the corresponding elementary matrices.

1 2 —4 1 2 —4 1 2 -4
-3 -6 13| 8|0 0 1| w |0 -1 2| &
0 -1 2 [ ) 0 0 1
1 2 —4 10 0 10 0
01 2| gm |01 2% |0 10
0 0 1 0 0 1 0 0 1

Notice that the reduced row-echelon form of A equals I3. Now find the
matrices E1, Eq2, E3, E4 and Es.



Example (continued

)
o
E, = 0,
1

S W =
o = O



Example (continued)

o — O

O O

— O O

|

S O

S - O

— M O

¥



Example (continued)
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Example (continued)
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S O

S - O

— M O
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S O -

AN~ O
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Example (continued)

oo~
o~ o
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0
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L ]
r 1
o — o Il
0
oo - 3
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Example (continued

¥

It follows that

S W =
o = O
o
o
—

o
—_

1 -2 0
Es=|0 1 0]|,BEs=
0 0 1

(Es(E4(E3(E2(E1A)))))
(EsE4EsE.E)A

and therefore
A™! = EsE4E3EqE,

)

0 1 0 0]

0 7E2: 7E3:
1 0 |

o = O

= O O



Example (continued)
Since A_l = E5E4E3E2E17
A7t EsE4E3E2Eq
(A™H)™" = (EsEJEsE2E:1)"
A = E['E;'E;'E;'E:!



Example (continued)

Since A_l = E5E4E3E2E17

A™' = EsE4EsE-E;
(A" = (EsE4EsEE;)"!
A = E['E;'E;'E;'E:!

This example illustrates the following result.



Example (continued)

Since A_l = E5E4E3E2E17

A™' = EsE4EsE-E;
(A" = (EsE4EsEE;)"!
A = E['E;'E;'E;'E:!

This example illustrates the following result.

Theorem

Let A be an n X n matrix. Then, A~! exists if and only if A can be written
as the product of elementary matrices.



Example ( revisited — Matrix inversion algorithm)

[Al1]=

Ei[A|I]=

E:E [ A|I]=

1
-3
0

2
—6
=1

—4
13

2

E,

E2Eq

=

—

o

o

[




Example ( continued )

EsEoE [A 1] =

E4EsEoE [ A | 1] =

EsE4EsE.E [ A | 1] =

&)

2 —4
1 -2 |EsE.E,
0 1
0 0
1 -2 |E4EsEoE,
0 1
0 0
1 0 |EsE4EsE2E;
0 1
1
= EsE4E3EsE, = | 6
3

=N O

o

w o =

o =

= NN O




Problem

4 1 .
Express A = [ } as a product of elementary matrices.

-3 2



Problem

Express A = [ _3 9

4 1 .
} as a product of elementary matrices.

Solution
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Problem

Express A = [

Solution

4
-3 2

1 .
} as a product of elementary matrices.
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Express A = [

Solution

with

4

1
-3 2

} as a product of elementary matrices.
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} as a product of elementary matrices.



Problem

Express A = [

Solution

with

4

1
-3 2
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Problem

Express A = [

Solution

with

4

1
-3 2

} as a product of elementary matrices.



Problem

Express A = [ _3 9

4 1
} as a product of elementary

Solution

4 171 = 1 3] 1 371 3
-3 2| Bl 3 2P0 11| B |0 1

with

11 10 1 0
i E B R R

Since E4EsE2E1A =1, A=t = E4E3E>E;, and hence

A=E]'E;'E;'E}!

matrices.



Solution (continued)

Therefore,

w=[oa] ]



Solution (continued)

Therefore,

i.e.,



One result that we have assumed in all our work involving reduced
row-echelon matrices is the following.



One result that we have assumed in all our work involving reduced
row-echelon matrices is the following.

Theorem ( Uniqueness of the Reduced Echelon Form )

If A is an m X n matrix and R and S are reduced row-echelon forms of A,
then R = S.



One result that we have assumed in all our work involving reduced
row-echelon matrices is the following.

Theorem ( Uniqueness of the Reduced Echelon Form )

If A is an m X n matrix and R and S are reduced row-echelon forms of A,
then R = S.

Remark

This theorem ensures that the reduced row-echelon form of a matrix is
unique,



One result that we have assumed in all our work involving reduced
row-echelon matrices is the following.

Theorem ( Uniqueness of the Reduced Echelon Form )

If A is an m X n matrix and R and S are reduced row-echelon forms of A,
then R = S.

Remark

This theorem ensures that the reduced row-echelon form of a matrix is
unique, and its proof follows from the results about elementary matrices.
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Smith Normal Form

Definition

If A is an m X n matrix of rank r, then the matrix (Ior 8) is called the
mXn
Smith normal form of A.

Theorem

If A is an m X n matrix of rank r, then there exist invertible matrices U and
V of size m X m and n X n, respectively, such that

I. 0
uav = (§ 0>m



Proof.
1. Apply the elementary row operations:
[A|Ln] “E3 [rref (A) |U)
2. Apply the elementary column operations:
L 0
rref(A) €.c.o. (0 0>
In — mXn

v

2mXn

Remark

The elementary column operations above are equivalent to the elementary
row operations on the transpose:

] (5 )

[rref AT vT

nx2m



Problem

3 0 1
2 -1 0
A= 6N{/, where N is the Smith normal form of A and 6, V are some
invertible matrices.

Find the decomposition of A = { } into the Smith normal form:



Problem

3 0 1

Find the decomposition of A = { 2 _1 0

A= 6N{/, where N is the Smith normal form of A and 6, V are some

invertible matrices.

Solution

We have seen that
|3 0 1|1 0 1 0 1/3|1/3
[AHZ]_{Q —. 0‘0 1}6[0 1 2/3‘2/3

Now,

1 0]1 0 10
(rref(A)T 13>: 0 1|0 1 0|—=]0 1
i 210 01 0 0

} into the Smith normal form:



Solution (Continued)
Hence, we find N = UAV, namely,

((1) ? 8)2(%3 _01> B _01 (1)}

Finally, since U and V are invertible, we see that

A=U"'NVH
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