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Elementary Matrices

Definition
An elementary matrix is a matrix obtained from an identity matrix by
performing a single elementary row operation.

Remark ( Three Types of Elementary Row Operations )

(∼ bases for genomic sequences)
I Type I: Interchange two rows.
I Type II: Multiply a row by a nonzero number.
I Type III: Add a (nonzero) multiple of one row to a different row.
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Example
Switch the 2nd row

and the 4th row
Multiply −2 to the

3rd row
Add −3 multiple of

1st row to the 3rd row

E =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ,F =


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 1

 ,G =


1 0 0 0
0 1 0 0

−3 0 1 0
0 0 0 1

 ,

are examples of elementary matrices of types I, II and III, respectively.



Example (continued)
Let

A =


1 1
2 2
3 3
4 4



We are interested in the effect that (left) multiplication of A by E, F and G
has on the matrix A. Computing EA, FA, and GA . . .
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Example (continued)

EA =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 1
2 2
3 3
4 4

 =


1 1
4 4
3 3
2 2

 Switch the 2nd row
and the 4th row

FA =


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 1




1 1
2 2
3 3
4 4

 =


1 1
2 2

−6 −6
4 4

 Multiply −2 to the
3rd row

GA =


1 0 0 0
0 1 0 0

−3 0 1 0
0 0 0 1




1 1
2 2
3 3
4 4

 =


1 1
2 2
0 0
4 4

 Add −3 multiple of
1st row to the 3rd row

�

Remark
The elementary matrices are the programmed receipts for your cooking!



Example (continued)

EA =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 1
2 2
3 3
4 4

 =


1 1
4 4
3 3
2 2

 Switch the 2nd row
and the 4th row

FA =


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 1




1 1
2 2
3 3
4 4

 =


1 1
2 2

−6 −6
4 4

 Multiply −2 to the
3rd row

GA =


1 0 0 0
0 1 0 0

−3 0 1 0
0 0 0 1




1 1
2 2
3 3
4 4

 =


1 1
2 2
0 0
4 4

 Add −3 multiple of
1st row to the 3rd row

�

Remark
The elementary matrices are the programmed receipts for your cooking!



Example (continued)

EA =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 1
2 2
3 3
4 4

 =


1 1
4 4
3 3
2 2

 Switch the 2nd row
and the 4th row

FA =


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 1




1 1
2 2
3 3
4 4

 =


1 1
2 2

−6 −6
4 4

 Multiply −2 to the
3rd row

GA =


1 0 0 0
0 1 0 0

−3 0 1 0
0 0 0 1




1 1
2 2
3 3
4 4

 =


1 1
2 2
0 0
4 4

 Add −3 multiple of
1st row to the 3rd row

�

Remark
The elementary matrices are the programmed receipts for your cooking!



Theorem (Multiplication by an Elementary Matrix)
Let A be an m × n matrix.

If B is obtained from A by performing one single elementary row
operation,

then B = EA
where E is the elementary matrix obtained from Im by performing the
same elementary operation on Im as was performed on A.

A B

I E

El. Op. =⇒ A = EB



Problem
Let

A =

[
4 1
1 3

]
and C =

[
1 3
2 −5

]
Find elementary matrices E and F so that C = FEA.

Solution
Note. The statement of the problem implies that C can be obtained from A
by a sequence of two elementary row operations, represented by elementary
matrices E and F.

A =

[
4 1
1 3

]
→
E

[
1 3
4 1

]
→
F

[
1 3
2 −5

]
= C

where E =

[
0 1
1 0

]
and F =

[
1 0

−2 1

]
.Thus we have the sequence

A → EA → F(EA) = C, so C = FEA, i.e.,[
1 3
2 −5

]
=

[
1 0

−2 1

] [
0 1
1 0

] [
4 1
1 3

]
.
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Inverses of Elementary Matrices

Lemma
Every elementary matrix E is invertible, and E−1 is also an elementary
matrix (of the same type). Moreover, E−1 corresponds to the inverse of the
row operation that produces E.

The following table gives the inverse of each type of elementary row
operation:

Type Operation Inverse Operation
I Interchange rows p and q Interchange rows p and q
II Multiply row p by k 6= 0 Multiply row p by 1/k
III Add k times row p to row q 6= p Subtract k times row p from row q

Note that elementary matrices of type I are self-inverse.
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Inverses of Elementary Matrices

Example
Without using the matrix inversion algorithm, find the inverse of the
elementary matrix

G =


1 0 0 0
0 1 0 0

−3 0 1 0
0 0 0 1



Hint. What row operation can be applied to G to transform it to I4? The
row operation G → I4 is to add three times row one to row three, and thus

G−1 =


1 0 0 0
0 1 0 0
3 0 1 0
0 0 0 1


Check by computing G−1G.
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Example (continued)
Similarly,

E−1 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


−1

=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



and

F−1 =


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 1


−1

=


1 0 0 0
0 1 0 0
0 0 − 1

2
0

0 0 0 1
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Suppose A is an m × n matrix and that B can be obtained from A by a
sequence of k elementary row operations.

Then there exist elementary
matrices E1,E2, . . .Ek such that

B = Ek(Ek−1(· · · (E2(E1A)) · · · ))

Since matrix multiplication is associative, we have

B = (EkEk−1 · · ·E2E1)A

or, more concisely, B = UA where U = EkEk−1 · · ·E2E1.

To find U so that B = UA, we could find E1,E2, . . . ,Ek and multiply these
together (in the correct order), but there is an easier method for finding U.
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Definition
Let A be an m × n matrix. We write

A → B

if B can be obtained from A by a sequence of elementary row operations.

In
this case, we call A and B are row-equivalent.

Theorem
Suppose A is an m × n matrix and that A → B. Then

1. there exists an invertible m × m matrix U such that B = UA;
2. U can be computed by performing elementary row operations on[

A Im
]

to transform it into
[

B U
]
;

3. U = EkEk−1 · · ·E2E1, where E1,E2, . . . ,Ek are elementary matrices
corresponding, in order, to the elementary row operations used to
obtain B from A.
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Problem

Let A =

[
3 0 1
2 −1 0

]
, and let R be the reduced row-echelon form of A.

Find a matrix U so that R = UA.

Solution

[
3 0 1 1 0
2 −1 0 0 1

]
→

[
1 1 1 1 −1
2 −1 0 0 1

]
→

[
1 1 1 1 −1
0 −3 −2 −2 3

]

→
[

1 1 1 1 −1
0 1 2/3 2/3 −1

]
→

[
1 0 1/3 1/3 0

0 1 2/3 2/3 −1

]

Starting with
[

A I
]
, we’ve obtained

[
R U

]
.

Therefore R = UA, where

U =

[
1/3 0

2/3 −1

]
.
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]
→

[
1 1 1 1 −1
2 −1 0 0 1

]
→

[
1 1 1 1 −1
0 −3 −2 −2 3

]

→
[

1 1 1 1 −1
0 1 2/3 2/3 −1

]
→

[
1 0 1/3 1/3 0

0 1 2/3 2/3 −1

]

Starting with
[

A I
]
, we’ve obtained

[
R U

]
.

Therefore R = UA, where

U =

[
1/3 0

2/3 −1

]
.

�



Example ( A Matrix as a product of elementary matrices )
Let

A =

 1 2 −4
−3 −6 13
0 −1 2

 .

Suppose we do row operations to put A in reduced row-echelon form, and
write down the corresponding elementary matrices. 1 2 −4

−3 −6 13
0 −1 2

 −→
E1

 1 2 −4
0 0 1
0 −1 2

 −→
E2

 1 2 −4
0 −1 2
0 0 1

 −→
E3

 1 2 −4
0 1 −2
0 0 1

 −→
E4

 1 0 0
0 1 −2
0 0 1

 −→
E5

 1 0 0
0 1 0
0 0 1


Notice that the reduced row-echelon form of A equals I3. Now find the
matrices E1,E2,E3,E4 and E5.
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Example (continued)

E1 =

 1 0 0
3 1 0
0 0 1

 ,

E2 =

 1 0 0
0 0 1
0 1 0

 ,E3 =

 1 0 0
0 −1 0
0 0 1


E4 =

 1 −2 0
0 1 0
0 0 1

 ,E5 =

 1 0 0
0 1 2
0 0 1


It follows that

(E5(E4(E3(E2(E1A))))) = I
(E5E4E3E2E1)A = I

and therefore
A−1 = E5E4E3E2E1



Example (continued)
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Example (continued)

Since A−1 = E5E4E3E2E1,

A−1 = E5E4E3E2E1

(A−1)−1 = (E5E4E3E2E1)
−1

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5

This example illustrates the following result.

Theorem
Let A be an n × n matrix. Then, A−1 exists if and only if A can be written
as the product of elementary matrices.
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Example ( revisited – Matrix inversion algorithm)

[
A I

]
=

 1 2 −4
−3 −6 13
0 −1 2

∣∣∣∣∣∣ I



E1

[
A I

]
=

 1 2 −4
0 0 1
0 −1 2

∣∣∣∣∣∣ E1

 =

 1 2 −4
0 0 1
0 −1 2

∣∣∣∣∣∣
1 0 0
3 1 0
0 0 1



E2E1

[
A I

]
=

 1 2 −4
0 −1 2
0 0 1

∣∣∣∣∣∣ E2E1

 =

 1 2 −4
0 −1 2
0 0 1

∣∣∣∣∣∣
1 0 0
0 0 1
3 1 0





Example ( continued )

E3E2E1[ A | I ] =

 1 2 −4
0 1 −2
0 0 1

∣∣∣∣∣∣E3E2E1

 =

 1 2 −4
0 1 −2
0 0 1

∣∣∣∣∣∣
1 0 0
0 0 −1
3 1 0



E4E3E2E1[ A | I ] =

 1 0 0
0 1 −2
0 0 1

∣∣∣∣∣∣E4E3E2E1

 =

 1 0 0
0 1 −2
0 0 1

∣∣∣∣∣∣
1 0 2
0 0 −1
3 1 0



E5E4E3E2E1[ A | I ] =

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣E5E4E3E2E1

 =

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
1 0 2
6 2 −1
3 1 0



A−1 = E5E4E3E2E1 =

 1 0 2
6 2 −1
3 1 0





Problem

Express A =

[
4 1

−3 2

]
as a product of elementary matrices.

Solution

[
4 1

−3 2

]
−→
E1

[
1 3

−3 2

]
−→
E2

[
1 3
0 11

]
−→
E3

[
1 3
0 1

]
−→
E4

[
1 0
0 1

]
with

E1 =

[
1 1
0 1

]
,E2 =

[
1 0
3 1

]
,E3 =

[
1 0
0 1

11

]
,E4 =

[
1 −3
0 1

]
Since E4E3E2E1A = I, A−1 = E4E3E2E1, and hence

A = E−1
1 E−1

2 E−1
3 E−1

4
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Solution (continued)
Therefore,

A =

[
1 1
0 1

]−1 [
1 0
3 1

]−1 [
1 0
0 1/11

]−1 [
1 −3
0 1

]−1

i.e.,

A =

[
1 −1
0 1

] [
1 0

−3 1

] [
1 0
0 11

] [
1 3
0 1

]
�



Solution (continued)
Therefore,

A =

[
1 1
0 1

]−1 [
1 0
3 1

]−1 [
1 0
0 1/11

]−1 [
1 −3
0 1

]−1

i.e.,

A =

[
1 −1
0 1

] [
1 0

−3 1

] [
1 0
0 11

] [
1 3
0 1

]
�



One result that we have assumed in all our work involving reduced
row-echelon matrices is the following.

Theorem ( Uniqueness of the Reduced Echelon Form )
If A is an m × n matrix and R and S are reduced row-echelon forms of A,
then R = S.

Remark
This theorem ensures that the reduced row-echelon form of a matrix is
unique, and its proof follows from the results about elementary matrices.
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One result that we have assumed in all our work involving reduced
row-echelon matrices is the following.
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Elementary Matrices

Inverses of elementary matrices

Smith Normal Form



Smith Normal Form

Definition

If A is an m× n matrix of rank r, then the matrix
(

Ir 0
0 0

)
m×n

is called the

Smith normal form of A.

Theorem
If A is an m× n matrix of rank r, then there exist invertible matrices U and
V of size m × m and n × n, respectively, such that

UAV =

(
Ir 0
0 0

)
m×n



Smith Normal Form

Definition

If A is an m× n matrix of rank r, then the matrix
(

Ir 0
0 0

)
m×n

is called the

Smith normal form of A.

Theorem
If A is an m× n matrix of rank r, then there exist invertible matrices U and
V of size m × m and n × n, respectively, such that

UAV =

(
Ir 0
0 0

)
m×n



Proof.
1. Apply the elementary row operations:

[A|Im]
e.r.o.−→ [rref (A) |U]

2. Apply the elementary column operations:

(
rref(A)

In

)
e.c.o.−→


(

Ir 0
0 0

)
m×n

V


2m×n

�

Remark
The elementary column operations above are equivalent to the elementary
row operations on the transpose:[

rref(A)T
∣∣∣In] e.r.o.−→

[(
Ir 0
0 0

)
n×m

∣∣∣∣∣VT

]
n×2m



Problem

Find the decomposition of A =

[
3 0 1
2 −1 0

]
into the Smith normal form:

A = ŨNṼ, where N is the Smith normal form of A and Ũ, Ṽ are some
invertible matrices.

Solution
We have seen that

[A|I2] =
[

3 0 1 1 0
2 −1 0 0 1

]
→

[
1 0 1/3 1/3 0
0 1 2/3 2/3 −1

]
= [rref(A)|U]

Now,(
rref(A)T

∣∣∣∣ I3
)

=

 1 0 1 0 0
0 1 0 1 0
1
3

2
3

0 0 1

 →

 1 0 1 0 0
0 1 0 1 0
0 0 − 1

3
− 2

3
1

 =
[
NT

∣∣∣VT
]



Problem

Find the decomposition of A =

[
3 0 1
2 −1 0

]
into the Smith normal form:

A = ŨNṼ, where N is the Smith normal form of A and Ũ, Ṽ are some
invertible matrices.

Solution
We have seen that

[A|I2] =
[

3 0 1 1 0
2 −1 0 0 1

]
→

[
1 0 1/3 1/3 0
0 1 2/3 2/3 −1

]
= [rref(A)|U]

Now,(
rref(A)T

∣∣∣∣ I3
)

=

 1 0 1 0 0
0 1 0 1 0
1
3

2
3

0 0 1

 →

 1 0 1 0 0
0 1 0 1 0
0 0 − 1

3
− 2

3
1

 =
[
NT

∣∣∣VT
]



Solution (Continued)
Hence, we find N = UAV, namely,(

1 0 0
0 1 0

)
=

(
1/3 0
2/3 −1

)[
3 0 1
2 −1 0

]1 0 −1/3
0 1 −2/3
0 0 1


Finally, since U and V are invertible, we see that

A = U−1NV−1,

namely,

A =

[
3 0 1
2 −1 0

]
=

(
1/3 0
2/3 −1

)−1 (
1 0 0
0 1 0

)1 0 −1/3
0 1 −2/3
0 0 1

−1

=

(
3 0
2 −1

)(
1 0 0
0 1 0

)1 0 1/3
0 1 2/3
0 0 1


= ŨNṼ.
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